Section 3.1 The Definition of the Derivative

(1) Tangent Lines and Tangent Slopes
(2) Instantaneous Rates of Change
(3) Differentiability

- Graphical
(3) Algebraic

Slope of a Secant Line

$$
\frac{f(b)-f(a)}{b-a}
$$

Slope of the Tangent Line
$\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Derivative of a Function at a Point

The derivative of a function $y=f(x)$ at $x=a$ is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if it exists.

Let $y=f(x)$ be a function and $y=s(t)$ be a function of time, t, representing the distance traveled from a point.

Average Rate of Change over $[a, b]$

- Rate of Change

$$
f_{\text {average rate }}=\frac{f(b)-f(a)}{b-a}
$$

- Slope of Secant Line
- Average Velocity

$$
v_{\text {average }}=\frac{s(b)-s(a)}{b-a}
$$

Instantaneous Rate of Change at a

- Rate of Change - Derivative

$$
f^{\prime}(a)=\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}
$$

- Slope of Tangent Line
- Instantaneous Velocity

$$
v(a)=s^{\prime}(a)=\lim _{t \rightarrow a} \frac{s(t)-s(a)}{t-a}
$$

Tangent lines can fail to exist. If the derivative of $f(x)$ exists at $x=a$, then f is said to be differentiable at $x=a$.

Example I, Instantaneous Velocity

For the first 10 seconds after liftoff, the height of a model rocket (in meters) is given by the function

$$
h(t)=t^{2}+t
$$

where t is the number of seconds after liftoff. How fast is the rocket traveling 4 seconds after liftoff?

Instantaneous Velocity is the Derivative of Distance

$$
\begin{aligned}
h^{\prime}(a) & =\lim _{t \rightarrow a} \frac{h(t)-h(a)}{t-a} \\
h^{\prime}(4) & =\lim _{t \rightarrow 4} \frac{t^{2}+t-20}{t-4} \\
& =\lim _{t \rightarrow 4}(t+5)=9
\end{aligned}
$$

Example II, Instantaneous Rates of Change

A manufacturer produces bolts of a fabric with a fixed width. The total cost of producing x yards of this fabric is $C=f(x)$ dollars.
(i) What are the units of the derivative $f^{\prime}(a)$? dollars
(ii) In practical terms, what does it mean to say that $f^{\prime}(1000)=9$? The cost increases approximately by 9 dollars when the production increases from 1000 yards to 1001 yards.
(iii) Which do you think is greatest: $f^{\prime}(5), f^{\prime}(500)$, or $f^{\prime}(5000)$? The increase in cost for an extra yard only depends on the material needed for producing a yard. Therefore, all three are the same.

What Differentiability Looks Like

Remember that $f(x)$ is said to be differentiable at $x=a$ if the derivative $f^{\prime}(a)$ exists.

If $f^{\prime}(a)$ exists, then the graph of f is locally linear at $x=a$.
As we zoom in on the point ($a, f(a)$), the graph becomes nearly indistinguishable from its tangent line.

What Differentiability Looks Like

If $f^{\prime}(a)$ does not exist, then the graph of f is not locally linear at $x=a$.

For example, the function $y=|x|$ is not differentiable at $x=0$. As we zoom in toward $(0,0)$, the corner in the graph does not disappear. So f is not locally linear at $x=0$, and we cannot expect $f^{\prime}(0)$ to exist.

Example III, Points of Non-Differentiability

Vertical Tangents

Corners

Oscillating Secant Lines

Use the following applet to see that secant lines do not settle down to a limiting position.

If $f(x)$ is differentiable at $x=a$, then $f(x)$ is continuous at $x=a$.
! Warning: Continuity does not imply differentiability.

White Noise

Example IV

Each limit represents a derivative $f^{\prime}(a)$. What is $f(x)$ and what is a?
(i) $\lim _{h \rightarrow 0} \frac{5^{2+h}-25}{h}$

$$
f(x)=5^{x} \quad a=2
$$

(ii) $\lim _{x \rightarrow \frac{1}{4}} \frac{\frac{1}{x}-4}{x-\frac{1}{4}}$

$$
f(x)=\frac{1}{x} \quad a=\frac{1}{4}
$$

iii) $\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}$

$$
f(x)=x^{3} \quad a=5
$$

